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Abstract. In this paper, we investigate critical point and extrema structure of a multivariate real
polynomial. We classify critical surfaces of a real polynomial f into three classes: repeated,
intersected and primal critical surfaces. These different critical surfaces are defined by some essential
factors of f , where an essential factor of f means a polynomial factor of f−c0, for some constant
c0. We show that the degree sum of repeated critical surfaces is at most d−1, where d is the degree
of f . When a real polynomial f has only two variables, we give the minimum upper bound for the
number of other isolated critical points even when there are nondegenerate critical curves, and the
minimum upper bound of isolated local extrema even when there are saddle curves. We show that
a normal polynomial has no odd degree essential factors, and all of its even degree essential factors
are normal polynomials, up to a sign change. We show that if a normal quartic polynomial f has
a normal quadratic essential factor, a global minimum of f can be either easily found, or located
within the interior(s) of one or two ellipsoids. We also show that a normal quartic polynomial can
have at most one local maximum.

Key words. critical surface, extrema, extrema surface, normal polynomial, polynomial, quadratic
polynomial, quartic polynomial, tensor.

1. Introduction

We assume that f � �n→� is a real polynomial of degree d and n variables. We
are interested in minimizing f . Throughout this paper, we assume d�1 as we
are not interested in constant polynomials.
The multivariate polynomial optimization problem has attracted some attention

recently [6, 8–10, 12]. It has applications in signal processing [12, 16], merit
functions of polynomial equations [6], 0−1 integer linear and quadratic pro-
grams [8], nonconvex quadratic programs [8] and bilinear matrix inequalities [8].
It is related with Hilbert’s 17th problem on the representation of nonnegative
polynomials [9, 13].
What distinguishes a polynomial from an arbitrary smooth function? If a poly-

nomial only has isolated critical points, then it can only have a finite number of
isolated extrema. This number is bounded above by a function which depends
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upon the degree and the number of variables of the polynomial. A polynomial of
two or more variables may have manifold extrema. The shape of the manifold
extrema of a polynomial is also not arbitrary.
Let Cf be the number of isolated critical points of f . When f has only isolated

critical points, by the Bézout Theorem [1, 7], we have [12]

Cf ��d−1�n	 (1)

Let Ef be the number of isolated extrema of f . Since critical points include
extrema and saddle points, we may expect that there is an upper bound for Ef ,
which is smaller than �d−1�n. In 1993, Durfee et al. [4] studied this problem for
n=2. They proved that for n=2, when f has only isolated critical points,

Ef �
1
2
d2−d+1	 (2)

They pointed out that this problem is closely related to Hilbert’s 16th problem
on the arrangements of ovals of real algebraic curves. Shustin [14, 15] further
studied this problem for n=2.
From point of view of basic mathematics, this topic is closely related with

algebraic geometry and topology, [1–3, 5, 7, 14, 15]. Actually, algebraic geometry
is the study of geometric objects defined by polynomial equations, using algebraic
means [2], while the number counting for isolated critical points and extrema
involves topological degrees and other topological tools [3, 4, 14, 15].
However, from point of view of multivariate polynomial optimization, the

above limited knowledge on the numbers of isolated critical points and extrema
is vague and seems not very helpful. When n�2, f may have manifold critical
points and extrema. Then we have three immediate questions:

(A) How can we judge if f has only isolated critical points or not?
(B) If f has manifold critical points or extrema, what are their characteristics?

Are there upper bounds for the numbers of such critical point manifolds or
extrema manifolds?

(C) Even if f has manifold critical points or extrema, may be only isolated
critical points or extrema are useful in applications. Are there upper bounds
for the numbers of isolated critical points or extrema even if manifold critical
points exist?

In this paper, we investigate critical point and extrema structure of a multivariate
real polynomial, and in particular, a normal polynomial, which has engineering
applications [12]. Normal quartic optimization is the simplest nontrivial case of
nonconvex global optimization.
In Section 2, we summarize the current knowledge and questions on isolated

critical points and extrema of a general real polynomial f .
In Section 3, we characterize critical surfaces of f . We classify critical surfaces

of f into three classes: repeated, intersected and primal critical surfaces. These
critical surfaces are defined by some essential factors of f . If we may write

f �x�=g�x�h�x�+c0
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for some polynomials g and h, and a constant c0, then we call g and h essential
factors of f . If h is irreducible and the zero set of h is nonempty, we call h a
substantial polynomial. Repeated and primal critical surfaces are defined by some
essential substantial factors of f , while intersected critical surfaces are defined
by some essential substantial factor pairs of f . We show that the degree sum of
repeated critical surfaces is at most d−1.
We then characterize extrema and saddle surfaces of f in Section 4.
In Section 5, we give the minimum upper bound on the number of isolated

critical points of a two-variable real polynomial f , even when f has nondegenerate
critical curves:

Ĉf ��d−df −1�2�

where Ĉf be the number of isolated critical points of f , which are not in some
repeated critical curves, and df is the repeated critical degree sum of f , which
we will define later. Clearly, this bound Ĉf extends (1) in the case of n=2. We
also give the minimum upper bound on the number of isolated extrema of f ,
even when f has no nondegenerate extrema curves but f may have some saddle
curves and degenerate extrema curves:

Êf �
1
2
�d−df �

2−�d−df �+1�

where Êf be the number of isolated extrema of f , which are not in some repeated
critical curves. Clearly, this bound Êf extends (2), which was given when f has
only isolated critical points.
An even degree polynomial is called a normal polynomial if the coefficient

tensor of its leading degree term is positive definite. It has engineering applications
[12]. In Section 6, we show that a normal polynomial has no odd degree essential
factors, and all of its even degree essential factors are normal polynomials, up to
a sign change.
In Section 7, we investigate the extrema structure of a normal quartic

polynomial f . We show that if it has a repeated quadratic essential factor, or
an unrepeated quadratic substantial factor, a global minimum of f can be either
easily found, or located within the interior(s) of one or two ellipsoids. Finally,
we show that a normal quartic polynomial can have at most one local maximum.
Some final remarks are given in Section 8.

2. Isolated Critical Points and Extrema

We denote F � �n→�n as the gradient function of f , i.e., F =�f 	 The results
of this section are either summarized or derived from some existing results, or
observed by counterexamples.
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Define C�n�d�, E�n�d� and N�n�d� as the minimum upper bounds of numbers
of isolated critical points, local extrema and local minima of a real multivariate
polynomial f of degree d and n variables. Then we have

N�n�d��E�n�d��C�n�d�	

Clearly these three functions only take positive integer values. It is clear that

E�1�d�=C�1�d�=d−1

and

N�1�d�=r�

where d=2r or 2r+1. We hence consider the case that n�2.
We distinguish two cases: (i) the general case in which f may have manifold

critical points; (ii) the special case in which f has only isolated critical points.
We first consider the function C�n�d�.

PROPOSITION 1. In general, we have

C�n�d���d−1�n	 (3)

If f has only isolated critical points, we have

C�n�d�=�d−1�n	 (4)

Proof. Let

��t� =
d−1∏
i=1

�t−i��

��t� =
∫ t

0
��t�dt

and

f �x�=
n∑

i=1

��xi�	

Then (3) holds. If f has only isolated critical points, by the Bézout Theorem [1, 7],

C�n�d���d−1�n	 (5)

Hence, by (3), we have (4). �

QUESTION 1. Does (5) also hold even when f has manifold critical points?

In Section 5, we will show that (5) is true for n=2 even when f has manifold
critical points. Thus, we conjecture that (5) may also be true for n�3 even
when f has manifold critical points.
We now consider the function E�n�d�.
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PROPOSITION 2. In general, we have

E�n�2r��rn+�r−1�n (6)

and

E�n�2r+1��2rn (7)

for r�1. The equality holds in (6) and (7) when r=1.
Proof. The inequalities can be seen by the example in the proof of Propo-

sition 1. When r=1, it is obvious that the equality holds in (6). By [12, 14], a
cubic polynomial has at most one isolated local minimum, thus also at most one
isolated local maximum. Hence, when r=1, the equality holds in (7). �

PROPOSITION 3. If f has only isolated critical points, we have

E�2�2r�=2r2−2r+1 (8)

and

E�2�2r+1�=2r2 (9)

for r�1.
Proof. By (2), (6) and (7), we have (8) and (9). �

In Section 5, we will show that (2) holds even when n=2 and f has saddle
curves.

QUESTION 2. By Propositions 2 and 3, we see that the equality holds in (6) and
(7) when r=1 or n=2 and f has only isolated critical points. Does the equality
hold in (6) and (7) when n�3, r�2, and f has only isolated critical points?

Finally, we discuss the function N�n�d�.

PROPOSITION 4. In general, we have

N�n�2�=N�n�3�=1� (10)

N�2�2r��2r2−2r+1 (11)

for r�1 and

N�2�2r+1��2r2−r−1 (12)

for r�2. When f has only isolated critical points, equality holds in (11).
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Proof. The first equality of (10) is obvious. By [12, 14], we have the second
equality of (10). By Theorem 3.1.6 of [14], we have (11). By (9), equality holds
in (11) when f has only isolated critical points. By Theorem 3.1.6 of [14], when
d=2r+1 is odd, examples can be constructed such that (3.1.2), (3.1.3) and
(3.1.5) of [14] hold except the case that (3.1.7) of [14] holds. Let Nf and Mf

be the numbers of local minima and maxima of f , � be the number of real
intersection points of the projective closure of �F�x�=0� by the line at infinity.
If we have examples such that (3.1.2), (3.1.3) and (3.1.5) of [14] hold, we have

Nf +Mf =
�d−1�2+1−�

2
	

However, the rule that (3.1.7) of [14] must not hold implies that

Mf �
d−�

2
	

These two expressions imply that for Shustin’s example,

Nf =2r2−r−1	

Hence, we have (12). �

Comparing (8) and (9) with (11) and (12), we see that the minimum bound
for isolated local minima is very close to the minimum bound for isolated local
extrema. We cannot expect a great reduction in the number of local extrema if
we only consider local minima.

3. Critical Surfaces

We now cite the following theorem from [1, 7].

THEOREM 1 (Unique Factorization Theorem). Any non-constant polynomial f
over a field can be written uniquely (up to order and non-zero scalars) in the
form

f =cf
r1
1 ···f rs

s

where c is a scalar, f1�			�fs are irreducible, and for i �=j no fi is a factor
of fj .

We discuss on the real field.
Thus, for any real number c0, f can be written uniquely (up to order and

non-zero scalars) in the form

f =cf
r1
1 ···f rs

s +c0� (13)
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where c is a scalar, f1�			�fs are irreducible, and for i �=j no fi is a factor of fj ,
with c�s�f1�			�fs�r1�			�rs depends upon c0.
The polynomials f1�			�fs are irreducible factors of f−c0, and the numbers

r1�			�rs are their multiplicities. A factor of multiplicity �2 is said to be repeated.
Denote

Z �=�x∈�n �F �x�=0�	

Then Z is the critical point set of f . We use �i to denote �/�xi.
Let C be a connected component of Z. Then f takes the same value on C.

This can be seen by the fact that for any two points z and y in C, f �z�−f �y�
should be equal to the line integral∫

"
�1f �x�dx1+···+�nf �x�dxn�

where " is a smooth curve from y to z on C. Then this line integral is zero as
F�x�≡0 on C.
We call c0 a critical level of f if there is a critical point x∗ of f such that

f �x∗�=c0.

QUESTION 3. Let L�n�d� denote the minimum upper bound of the number of
such critical levels for a real polynomial of degree d and n variables. Is L�n�d�
finite? If so, how can we estimate L�n�d�?

Let c0 be a critical level of f . Then there is at least one factor fi of f−c0 such
that there is x∗ ∈�n, which is a critical point of f and fi�x

∗�=0.
We now wish to know, if h is a factor of f−c0, and h�x∗�=0, is x∗ a critical

point of f ?
To answer this question, we need to define substantial and primal polynomials.
Suppose that h� �n→� is a non-constant polynomial. Denote

D0�h�=�x∈�n �h�x�=0�

and let Z�h� be the critical point set of h. Denote

ZD0�h�=D0�h�∩Z�h�	

If h is irreducible and D0�h� is nonempty, h is called a substantial polynomial.
If furthermore ZD0�h� is nonempty, h is called a primal polynomial.
For example,

h�x�=
n∑

i=1

x2
i
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is a primal polynomial, while

h�x�=
n∑

i=1

x2
i +1

is not a substantial polynomial.

THEOREM 2 (Critical Points). Suppose that c0 is a real constant.

(i) If h is a repeated substantial factor of f−c0, then all points in D0�h� are
critical points of f .

(ii) If h1 and h2 are two substantial factors of f−c0, they do not contain
each other as a factor, and D0�h1�∩D0�h2� is nonempty, then all points in
D0�h1�∩D0�h2� are critical points of f .

(iii) If h is a primal factor of f−c0, then all points in ZD0�h� are critical points
of f .

(iv) Any critical point of f should be in one of the above three types for
some c0.

Proof. (i) Denote

f �x�=g�x�%h�x�&p+1+c0�

where h is substantial and g does not contain h as a factor. Let x∗ ∈D0�h�. If
p�1, then we have

Fi�x
∗�=�ig�x

∗�%h�x∗�&p+1+�p+1�g�x∗�%h�x∗�&p�ih�x
∗�=0

for all i. This proves (i).
(ii) We now denote

f �x�=g�x�h1�x�h2�x�+c0	

If h1�x
∗�=h2�x

∗�=0, we have

Fi�x
∗� = h1�x

∗�h2�x
∗��ig�x

∗�+g�x∗�h2�x
∗��ih1�x

∗�

+g�x∗�h1�x
∗��ih2�x

∗�=0

for all i. This proves (ii).
(iii) Denote

f �x�=g�x�h�x�+c0	

If h�x∗�=0 and �h�x∗�=0, we have

Fi�x
∗�=h�x∗��ig�x

∗�+g�x∗��ih�x
∗�=0

for all i. This proves (iii).
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(iv) Finally, assume that x∗ is a critical point of f . Let c0=f �x∗�. Then we
may write

f �x�=g�x�h�x�+c0�

where h is an irreducible factor of f−c0 and h�x∗�=0. Since x∗ is a critical
point of f , we have

0=Fi�x
∗�=h�x∗��ig�x

∗�+g�x∗��ih�x
∗�=g�x∗��ih�x

∗�

for all i. If x∗ is not in the types of (i) and (ii), then we have

g�x∗� �=0	

This implies that

�ih�x
∗�=0

for all i. This shows that x∗ ∈ZD0�h�, i.e., x
∗ is a critical point in the type of

(iii). This proves (iv). �

LEMMA 1. Suppose h1 and h2 are irreducible factors of f−c1 and f−c2
respectively, c1 �=c2. Then h1 and h2 do not contain each other as a factor.
Proof. We have

f �x�=g1�x�h1�x�+c1=g2�x�h2�x�+c2

for some polynomials g1 and g2. If h1 is a factor of h2, then it is a factor of
c2−c1, which is impossible. �

We say that h is an essential factor of f if it is a factor of f−c0 for some
constant c0. By Lemma 1, for an essential factor h of f , the associated constant
c0 is unique.
If h is a repeated essential substantial factor of f , then by Theorem 2 (i), all

points of D0�h� are critical points of f . In this case, we call D0�h� a repeated
critical surface of f .
A question is: how many distinct repeated critical surfaces may f have at

most? An alternative way to state this question is: how many distinct repeated
essential substantial factors of f (up to order and non-zero scalars) may f have at
most?
Actually, we may bound the number of repeated essential (may be not

substantial) factors of f .
If h is a repeated essential factor of f , then we may write f as:

f �x�=g�x�%h�x�&p+1+c0�

where p�1, h is an irreducible polynomial and g does not contain h as a factor.
Then we say that h is a repeated essential factor of f , with multiplicity p+1.
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Let �hi� i∈ I� be the set of all distinct repeated essential factors of f (up to order
and non-zero scalars) such that hi is not a factor of hj for i �=j. Let the degree
of hi be di and the multiplicity of hi as a repeated essential factor of f be pi+1.
Denote

df =
∑
i∈I

dipi	

We call df the repeated critical degree sum of f .

THEOREM 3 (Repeated Essential Factor and Repeated Critical Degree Sum).
Suppose that h is an irreducible polynomial.

(i) If h is a repeated essential factor of f , with multiplicity p+1, p�1, then h
is a factor of Fi, exactly with multiplicity p, for i=1�			�n.

(ii) df �d−1	

Proof. Let

f �x�=g�x�%h�x�&p+1+c0�

where p�1 and g does not contain h as a factor.

(i) We now have

Fi�x�= %�ig�x�h�x�+�p+1�g�x��ih�x�&·%h�x�&p

for i=1�			�n. Since the degree of �ih is less than the degree of h, �ih does not
contain h as a factor. Since g does not contain h as a factor, the multiplicity of
h in Fi is exactly p. This proves (i).
(ii) By (i), since hi and hj do not contain each other as a factor for i∈ I�j∈ I

and i �=j, we may write

Fi�x�=gi�x�
∏
j∈I

%hj�x�&
pj

for some polynomial gi for i=1�			�n. Since the degree of Fi is not greater than
d−1, we have

df �d−1	

This proves (ii). �

Let

f �x�= %h�x�&d�
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where h is a linear function. Then we have df =d−1	 Hence, if we let
RCDS�n�d� denote the minimum upper bound of the repeated critical degree
sum of a polynomial of degree d with n variables, then we have

RCDS�n�d�=d−1�

which is independent from n.
Write

Fi�x�=gi�x�
∏
j∈I

%hj�x�&
pj �

where �hj� j∈ I� is the set of all distinct repeated essential factors of f (up to
order and non-zero scalars), with multiplicity pi+1. Then the degree of gi is not
greater than d−1−df . Clearly, all other critical points which are not in some
repeated critical surfaces are solutions of

g�x�=0�

where g� �n→�n and the components of g are gi. By the Bézout theorem, if g
has only isolated solutions, the number of these isolated solutions is not greater
than �d−1−df �

n. Hence, we have the following corollary.

COROLLARY 1. If all the other critical points of f , which are not in some
repeated critical surfaces of f , are isolated, then the number of these isolated
solutions is not greater than �d−1−df �

n.

Let REF�n�d� denote the minimum upper bound of the number of distinct (up
to order and non-zero scalars) repeated essential factors of a polynomial of degree
d with n variables. Then we have

REF�n�d��RCDS�n�d�=d−1	

Consider

f �x�=
r∏

i=1

%hi�x�&
2�

where h1�			�hr are distinct (up to order and non-zero scalars) linear functions.
We see that

REF�n�2r+1��REF�n�2r��r	

QUESTION 4.

REF�n�d�=?

We believe that REF�n�d� is also independent from n.
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QUESTION 5. Can different repeated essential factors of f have different levels?
For example, is it possible that

f �x�=g1�x�%h1�x�&
p1+c1=g2�x�%h2�x�&

p2+c2�

where hi is irreducible and gi does not contain hi as a factor for i=1�2, c1 �=c2?

We now study other types of critical points. Suppose that h1 and h2 are two
unrepeated substantial factors of f−c0 for some constant c0, h1 and h2 do not
contain each other as a factor, and D0�h1�∩D0�h2� is nonempty. By Theorem 2,
all points of D0�h1�∩D0�h2� are critical points of f . In this case, we call �h1�h2�
a substantial pair of essential factors of f , and D0�h1�∩D0�h2� an intersected
critical surface of f .
Let ��hi�hj� � �i�j�∈ I1� be the set of all distinct substantial pairs of essential

factors (up to order and non-zero scalars for hi and hj) of f . Let the degrees of
hi and hj be di and dj respectively. We call

idf =
∑

�i�j�∈I1
didj

the intersected critical degree product sum of f . Let the minimum upper bound
of the intersected critical degree product sum of a real polynomial of degree d
with n variables be ICDPS�n�d�. Let the minimum upper bound of the number
of distinct substantial pairs of essential factors (up to order and non-zero scalars
for hi and hj) of a real polynomial of degree d with n variables be SPEF�n�d�.
Let

f =h1�			�hd�

where hi are linear functions, no two of them are proportional, and any two of
them have common zero set. Then we see that

idf =
1
2
d�d−1�	

Hence,

ICDPS�n�d��
1
2
d�d−1�	

We also see that

SPEF�n�d��
1
2
d�d−1�	

QUESTION 6.

ICDPS�n�d�=?

SPEF�n�d�=?
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QUESTION 7. Can two substantial pairs of essential factors of f be in two
different levels, i.e., are there g1�g2�h1�h2�h3�h4�c1�c2 such that

f �x�=g1�x�h1�x�h2�x�+c1=g2�x�h3�x�h4�x�+c2�

where hi are substantial, D0�h1�∩D0�h2� and D0�h3�∩D0�h4� are not empty, g1
does not contain h1 or h2 as a factor, g2 does not contain h3 or h4 as a factor,
c1 �=c2?

We call two linear functions are parallel if the hyperplanes which they define
are parallel. We have the following proposition:

PROPOSITION 5 (Linear Essential Factors). Suppose that f has some linear
essential factors. Then there are only two cases:

(i) All linear essential factors are in the same critical level.
(ii) All linear essential factors are parallel.

Proof. Suppose that h1�			�hsl
are distinct (up to order and non-zero scalars)

linear essential factors of f . If h1 and h2 are not parallel, then D0�h1�∩D0�h2� is
nonempty. Hence, they must be in the same critical level. Then other hi must not
be parallel to at least one of h1 and h2. Thus, all of them are in the same critical
level. This proves the proposition. �

A trivial example for (ii) is that f itself is a linear function.

QUESTION 8. Is there a nontrivial example for (ii) in this proposition?

Finally, if h is an unrepeated primal essential factor of f , by Theorem 2, all
points of ZD0�h� are critical points of f . In this case, we call ZD0�h� a primal
critical surface of f , and call a point in ZD0�h� a primal critical point of f . In
many cases, f has only isolated primal critical points.
For example, consider n=2 and

f �x�=x3
1−3x1−x2

2	

Then f has two critical levels −2 and 2. For c0=−2, we have a primal essential
factor h�x�=x3

1−3x1−x2
2+2. The only point in ZD0�h� is �1�0�. Hence, �1�0�

is a primal critical point of f . For c0=2, we have a primal essential factor
h�x�=x3

1−3x1−x2
2−2. In this case, the only point in ZD0�h� is �−1�0�. Hence,

�−1�0� is another primal critical point of f , and f has only two primal critical
points.
Denote the minimum bound of the number of distinct primal essential factors

(up to order and non-zero scalars) of a real polynomial of degree d with n
variables as PEF�n�d�.
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QUESTION 9.

PEF�n�d�=?

4. Extrema and Saddle Surfaces

In the last section we characterized critical surfaces. If x∗ is a point in a repeated
or intersected or primal critical surface of f , is it a local minimum or a local
maximum or a saddle point of f ?
We need to investigate the zero set of an essential factor of f more carefully.
Suppose that h� �n→� is a non-constant polynomial. Beside D0�h�, we now

denote

D1�h�=�x∈�n �h�x�>0��

D2�h�=�x∈�n �h�x�<0��

D3�h�=�x∈�n �h�x� �=0��

D00�h�=D0�h�∩clD1�h�∩clD2�h��

D01�h�=�D0�h�∩clD1�h��\D00�h��

D02�h�=�D0�h�∩clD2�h��\D00�h�

and

D03�h�=D01�h�∪D02�h�	

We call D00�h� the nondegenerate part of D0�h�, while D03�h� the degenerate
part of D0�h�. If D00�h� is nonempty, we say that h has a nondegenerate part.
If D03�h� is nonempty, we say that h has a degenerate part. Clearly, all points
in D03�h� are extrema of h. Hence, if h has a degenerate part, h is a primal
polynomial.
We now characterize the case that x∗ is a zero of only one (may be repeated)

essential factor of f .

PROPOSITION 6. Suppose that h is a substantial factor of f−c0 for some
constant c0. Denote

f �x�=g�x�%h�x�&p+c0�

where g does not contain h as a factor.

(i) If p�2 is even, then all points in D1�g�∩D0�h� are local minima of f , and
all points in D2�g�∩D0�h� are local maxima of f .

(ii) If p is odd and h has a degenerate part, then all points in D1�g�∩D01�h�
and D2�g�∩D02�h� are local minima of f , and all points in D1�g�∩D02�h�
and D2�g�∩D01�h� are local maxima of f .
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(iii) If p�3 is odd and h has a nondegenerate part, then all points in D3�g�∩
D00�h� are saddle points of f .

(iv) If p=1 and h is a primal essential factor of f and h has a nondegenerate
part, then all points in D3�g�∩ZD0�h�∩D00�h� are saddle points of f .

Proof. These may be directly seen by the definitions of D0�D1�D2�D3�D00�D01

and D02. �

For the example at the end of last section with n=2 and

f �x�=x3
1−3x1−x2

2�

we see that h�x�=f �x�+2 is a primal essential factor of f . Here, g�x�=1, h has
only a nondegenerate part. The only point in D3�g�∩ZD0�h� is �1�0�. Hence,
�1�0� is a saddle point of f . On the other hand, for c0=2, the only point in
D1�g�∩D02�h� is �−1�0�. Hence, �−1�0� is a local maximum of f .
Based upon this proposition, we may characterize extrema surfaces of f .

PROPOSITION 7 (Extrema Surfaces). Let c0 be a real constant. Suppose that

f �x�=g�x�
s0∏
i=1

%h0i�x�&
2p0i ·

s1∏
i=1

%h1i�x�&
2p1i−1 ·

s2∏
i=1

%h2i�x�&
2p2i−1+c0�

where pji�1 and hji are substantial factors of f−c0, h1i and h2i have degenerate
parts, for i=1�			�sj , j=0�1 and 2, s0+s1+s2�1�hji does not contain each
other, and g does not contain any hji as a factor.
Then all points in

D3�g�
⋂( s0⋂

i=1

D0�h0i�

)⋂( s1⋂
i=1

D01�h1i�

)⋂( s2⋂
i=1

D02�h2i�

)

are local extrema of f . If s2 is even, then all points in

E1=D1�g�
⋂( s0⋂

i=1

D0�h0i�

)⋂( s1⋂
i=1

D01�h1i�

)⋂( s2⋂
i=1

D02�h2i�

)

are local minima of f , and all points in

E2=D2�g�
⋂( s0⋂

i=1

D0�h0i�

)⋂( s1⋂
i=1

D01�h1i�

)⋂( s2⋂
i=1

D02�h2i�

)

are local maxima of f . If s2 is odd, then all points in E1 are local maxima of f ,
and all points in E2 are local minima of f . In these cases, we call E1 and E2

extrema surfaces of f .
Proof. Again, these may be directly seen by the definitions of D0�D1�D2�D3�

D00�D01 and D02. �
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For saddle surfaces, we need to think about the following phenomenon.

QUESTION 10. Suppose that

h=h1�			�hs�

where h1�			�hs are real polynomials in �n. Is it possible that there is a point x∗

in �n such that

x∗ ∈D03�h�
⋂( s⋂

i=1

D00�hi�

)
?

If the above phenomenon exists, we say that �h1�			�hs� forms a clique for x∗.
With this definition and definitions for D0�D1�D2�D3�D00 and D03, we have

the following proposition which characterizes saddle surfaces of f .

PROPOSITION 8 (Saddle Surfaces). Let c0 be a real constant. Suppose that

f �x�=g�x�
s0∏
i=1

%h0i�x�&
2p0i ·

s1∏
i=1

%h1i�x�&
2p1i−1 ·

s2∏
i=1

%h2i�x�&
2p2i−1+c0�

where pji�1 and hji are substantial factors of f−c0, h1i have degenerate parts,
and h2i have nondegenerate parts, for i=1�			�sj , j=0�1 and 2, s2�1, hji does
not contain each other, and g does not contain any hji as a factor.

(i) If s2=1, then all points in

S1=D3�g�
⋂( s0⋂

i=1

D0�h0i�

)⋂( s1⋂
i=1

D03�h1i�

)⋂
D00�h21�

are saddle points of f .
(ii) If s2�2, then all points in

S2=D3�g�
⋂( s0⋂

i=1

D0�h0i�

)⋂( s1⋂
i=1

D03�h1i�

)⋂( s2⋂
i=1

D00�h2i�

)

are saddle points of f , unless h21�			�h2s2
form a clique for that x. In these cases,

we call S1 and S2 saddle surfaces of f .

Hence, if such cliques do not exist for polynomials, all points in S2 are saddle
points of f . In particular, all points in intersected critical surfaces are saddle
points of f . Therefore, if such cliques do not exist, things will be very simple.

PROPOSITION 9. A local extremum of f is either a strict isolated extremum of
f or it is on an extrema surface of f .
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Proof. If x is a non-isolated local extremum of f , then there are points x�k�→x
as k→� and

f �x�k��=f �x�	

This implies that x is not a strict local extremum of f and x is on an extrema
surface of f . �

5. Isolated Critical Points and Extrema when n=2

In this section, we assume that f � �2→� is a real polynomial of degree d and
two variables. As stated before, we assume that d�1.
Since n=2, all the terms used in the last two sections with ‘surfaces’ should

be changed to curves. For a substantial polynomial h� �2→�, D00�h� defines a
curve in the plane, while D03�h� may only contain some isolated points.
For two substantial polynomials h1�h2� �2→�, if they do not contain each

other as a factor, D0�h1�∩D0�h2� only contains isolated points, as the intersection
of two distinct algebraic curves can only have some isolated points. Since

ZD0�h�=D0�h�∩D0��1�h��∩D0��2�h���

ZD0�h� is also a set of isolated points. Hence, by Theorem 2, for manifold critical
points of f , we only need to consider repeated critical curves.
Assume h is a repeated substantial factor of f−c0 for some constant c0, and

the multiplicity of h in f−c0 is even, i.e., we may write

f �x�=g�x�%h�x�&2p+c0�

where p�1 and g does not contain h as a factor. Then by Proposition 6, all
points in D3�g�∩D0�h� are local extrema of f . Assume that D00�h� is nonempty,
in this case, we call D3�g�∩D0�h� a nondegenerate extrema curve of f .
By Theorem 3, we may write

F1=g1h
p1
1 ···hps

s (14)

and

F2=g2h
p1
1 ···hps

s � (15)

where h1�			�hs are all distinct repeated essential factors of f , g1 and g2 do not
contain any of h1�			�hs as a factor. Let the degrees of h1�			�hs be d1�			�ds. Let

df =
s∑

i=1

pidi	
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Then df is the repeated critical degree sum of f . We also let

H=h
p1
1 ···hps

s 	

By Corollary 1, we have the following result.

PROPOSITION 10. Let Ĉf be the number of isolated critical points of f , which
are not in some repeated critical curves. Then

Ĉf ��d−df −1�2	

Proposition 10 extends (1) in the case that n=2.

QUESTION 11. How can we bound the number of isolated critical points which
are in some repeated essential critical curves of f ?

In the rest of this section, we will give the minimum upper bound of the
number of isolated extrema of f , when f has no nondegenerate extrema curves.
In this case, f may have saddle curves and degenerate extrema curves. Then,
if pi is odd, D00�hi� must be empty. In this case, if D02�hi� is nonempty, we
may reverse the sign of hi and absorb this sign change to g1 and g2. Then, H is
always nonnegative and is positive at an isolated extremum of f , which is not in
a repeated critical curve of f .
As Proposition 10 reveals, such an isolated critical point of f is an isolated

solution of the polynomial system

G�x�≡
(
g1�x�
g2�x�

)
=0�

where g1 and g2 are defined by (14) and (15). Thus, we may study the index of
G to estimate the number of isolated extrema of f .

PROPOSITION 11. Suppose that f has no nondegenerate extrema curves. Let
0 be a closed counterclock-oriented curve which does not pass a zero of F and
does not encircle repeated critical curves of f . Then the index of F around 0 is
the same as the index of G around 0.
Proof. Actually, the index of F around 0 is the topological degree of the map

u� 0→S1 given by

u�P�= F�P�

�F�P�� =
G�P�

�G�P�� �

while the topological degree of the map given by the right hand side of the above
equality is the index of G around 0 [4, 11]. �
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Thus, we may define the index of G as the index of G around a circle (oriented
counterclockwise) containing all isolated critical points of f , which are not in
some repeated critical curves of f . In this way, we may avoid the critical curves
of f which may extend to infinity. Under our assumption, the only nondegenerate
critical curves of f are saddle curves.
Let iG be the index of G, Êf and Ŝf be the numbers of isolated extrema and

isolated saddle points of f , which are not in some repeated critical curves of f ,
respectively.
Suppose that f has no nondegenerate extrema curves. By [4, 11] and Proposition

11, at a nondegenerate extremum of f , the index of G is +1, at a nondegenerate
saddle point of f , the index of G is −1. Actually, by perturbation analysis, we
may see that at an isolated extremum of f , the index of G is +p, at an isolated
saddle point of f , the index of G is −p, where p is the multiplicity of the
extremum or the saddle point in G respectively.
Under our assumption, as in [4], we have

iG= Êf − Ŝf �

counted with multiplicities.

PROPOSITION 12. The index iG about a circle C in the plane satisfies

�iG��d−df −1	

Proof. By Proposition 11, this proof is the same as the proof of Proposition
2.5 of [4], with F replaced by G�d−1 replaced by d−df −1, and i replaced
by iG. �

By Proposition 11, with F replaced by G, d−1 replaced by d−df −1, and i
replaced by iG, we may follow the discussion of Section 6 of [4] word by word.
As Corollary 6.9 of [4], we have the following result.

THEOREM 4. Suppose that f has no nondegenerate extrema curves. Then,

Êf �
1
2
�d−df �

2−�d−df �+1	

Clearly, this proposition extends (2).

QUESTION 12. When f has nondegenerate extrema curves, can we give a better
upper bound for Êf? Now its known upper bound in this case is actually Ĉf ,
which is bounded by �d−df −1�2.

QUESTION 13. How can we extend the results in this section to the case that
n�3?
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6. Positive Definite Tensor and Normal Polynomial

Let r�1 and n�2 in this section.
We use A�k� to denote a kth order tensor and use A

�k�
i1			ik

to denote its elements.
We assume il∈�1�			�n� for l=1�			�k. We assume that A�k� totally symmetric,
i.e.,

A
�k�
i1			ik

=A
�k�
j1			jk

if �i1�			�ik� is any reordering of �j1�			�jk�. Let x∈�n. Define

A�k�xk �=
n∑

i1�			�ik=1

A
�k�
i1			ik

xi1
			xik

	

Let �·� be the 2-norm in �n. Denote

S �=�x∈�n ��x�=1�	

We say that an even-order tensor A�2r� is positive definite if

A�2r�x2r >0

for all x∈S. We say that an even-order tensor A�2r� is negative definite if

A�2r�x2r <0

for all x∈S. These two definitions extend the definitions for positive and negative
definite matrices when r=1.
A 2r degree normal polynomial f � �n→� can be written as

f �x�=
2r∑
i=0

A�2r−i�x2r−i� (16)

where A�i� is an ith order totally symmetric tensor for i=0�1�			�2r , and A�2r� is
positive definite. Normal polynomials have many nice properties [12]. When �x�
tends to infinity, the value of a normal polynomial f will also tend to infinity.
A normal polynomial always has a global minimum. A bound for the norms of
global minima of a normal polynomial was given in [12].
Now, we will study what kinds of essential factors a normal polynomial f

may have. We first study the properties of positive definite and negative definite
tensors.

THEOREM 5. Suppose that n�2, and A�k� is a kth order totally symmetric
tensor. Then there is a point x∈S such that

A�k�xk=0�
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if either k is odd, or if k is even but A�k� is neither a positive nor a negative
definite tensor.
Proof. If k is odd, let y∈S. If A�k�yk �=0� then A�k�zk has different sign from

A�k�yk, where z=−y. Let C be the shortest circular curve on S which connects
y and z. This is possible when n�2. Since A�k�xk is continuous as a function of
x on C, there is a point x∈C⊂S such that A�k�xk=0	 This proves the theorem
when k is odd.
Suppose that k is even but A�k� is neither positive nor negative definite. If there

is no x∈S such that A�k�xk=0� then there are y�z∈S such that A�k�yk and A�k�zk

have different signs. But as argued before, this implies that there is x∈S such
that A�k�xk=0� which forms a contradiction. This completes the proof of the
theorem. �

This justifies that there are only even order positive and negative definite
tensors. We now turn to normal polynomials.

THEOREM 6 (Only Normal Essential Factors). When n�2, a 2r degree normal
polynomial f has no odd degree essential factors, and all of its even degree
essential factors are normal polynomials, up to a sign change.
Proof. Let

f �x�=g�x�h�x�+c0�

where c0 is a constant, h is a k degree polynomial and g is a 2r−k degree
polynomial, 1�k�2r Denote

h�x�=
k∑

i=0

Q�k−i�xk−i

and

g�x�=
2r−k∑
i=0

B�2r−k−i�x2r−k−i�

where Q�i� is an ith order tensor for i=0�			�k, B�i� is an ith order tensor for
i=0�			�2r−k. Comparing with (16), we have

A�2r�x2r =�B�2r−k�x2r−k��Q�k�xk�	

If either k is odd, or k is even but Q�k� is neither a positive nor a negative
definite tensor, then by Theorem 5, there is x∈S such that

Q�k�xk=0	



426 LIQUN QI

Then we have

A�2r�x2r =�B�2r−k�x2r−k��Q�k�xk�=0�

contradicting the assumption that A�2r� is positive definite.
If Q�k� is negative definite, then B�2r−k� is also negative definite. Replace g and

h by −g and −h. Then both Q�k� and B�2r−k� are positive definite. This proves
the theorem. �

This theorem reveals that a normal polynomial has very special critical surface
structure.

7. Normal Quartic Polynomial

We now consider a normal quartic polynomial f � �n→�.
According to the last section, a normal quartic polynomial f may only have

quadratic and quartic essential factors. It turns out that if f has a repeated
quadratic essential factor, or an unrepeated quadratic substantial factor h, its
extrema structure will be simple. In this case, a global minimum of f can be
either easily found, or located within the interior(s) of one or two ellipsoids.
By linear algebra, we have the following lemma.

LEMMA 2. If h is a normal quadratic polynomial, then we may write

h�x�=xTQx+aTx+a0� (17)

where Q is a positive definite n×n symmetric matrix, a∈�n and a0∈�. Let

x∗=−1
2
Q−1a	 (18)

Then

h�x∗�=a0−
1
4
aTQ−1a	

If h�x∗�<0, then D0�h� is an ellipsoid in �n. If h�x∗�=0, then D0�h�=�x∗� and
h�x��0 for all x. If h�x∗�>0, then h�x�>0 for all x.

In the following, if h�x∗�<0, then we use the word ‘ellipsoid’ to mean the
surface D0�h�, while the phrase ‘ellipsoid ball’ to mean the set

�x∈�n �h�x��0�	

We now discuss different cases in which f has a repeated quadratic essential
factor or an unrepeated quadratic substantial factor. The conclusions are made by
judging the sign of f−c0 in different regions.
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PROPOSITION 13 (Repeated Quadratic Essential Factor). If a normal quartic
polynomial f has a repeated quadratic essential factor h, then we may write

f �x�= %h�x�&2+c0�

where h is a normal quadratic polynomial and c0 is a constant. Let h be expressed
by (17) and x∗ be defined by (18).
If h�x∗�<0, then all points in D0�h� are global extrema of f , with the global

minimum value of f as c0, and f has a local maximum at x∗.
If h�x∗��0, then f has a unique global minimum at x∗. f has no other critical

points.
Proof. We have F�x�=2h�x��h�x�	
If h�x∗�<0, then D0�h� defines an ellipsoid, Z=D0�h�∪�x∗�� f �x��c0 for

all x and f �x�=c0 for x∈D0�h�. The conclusion follows.
If h�x∗��0, then Z=�x∗�	 Since f has a global minimum as f is a normal

polynomial. The conclusion follows. �

The proofs of the following propositions are also simple. We omit their proofs.

PROPOSITION 14 (Two Nondegenerate Ellipsoids). Suppose that a normal
quartic polynomial f has a pair of quadratic substantial factors h and g in the
same level, i.e.,

f �x�=g�x�h�x�+c0

for some constant c0, where both g and h are normal substantial quadratic
polynomials, and D0�g� and D0�h� define two nondegenerate ellipsoids.
If the two ellipsoid balls are intersected with a nonempty interior, then all

points in D0�g�∩D0�h� are saddle points of f , there are a local maximum in
the interior of the intersection of these two ellipsoid balls, and two minima in
the remaining parts of the interiors of these two ellipsoid balls. Comparing the
values of f at these two minima, we may find a global minimum of f .
If these two ellipsoid balls are only touched but do not contain each other,

then the touch point is a saddle point of f , and there are two local minima in
the interiors of these two ellipsoid balls. Comparing the values of f at these two
local minima, we may find a global minimum of f .
If these two ellipsoid balls are not intersected and do not contain each other,

then there are two local minima in the interiors of these two ellipsoid balls.
Comparing the values of f at these two local minima, we may find a global
minimum of f .
If these two ellipsoid balls are touched and one ellipsoid ball contains the

other in its interior, then the touch point is a saddle point of f , there is a local
maximum in the interior of the smaller ellipsoid ball and a global minimum in
the interior of the bigger ellipsoid ball subtracted the smaller ellipsoid ball.
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If these two ellipsoid balls are not intersected and one ellipsoid ball contains
the other in its interior, then there is a local maximum in the interior of the
smaller ellipsoid ball and a global minimum in the interior of the bigger ellipsoid
ball subtracted by the smaller ellipsoid ball.

For example, let

f �x�=g�x�h�x�+c0

with

g�x�=
n∑

i=1

x2
i −1

and

h�x�=�x1−1�2+
n∑

i=2

x2
i −1	

Then D0�g� and D0�h� define two spheres. We have

F1�x�=2�2x1−1�
[
x1�x1−1�+

n∑
i=2

x2
i −1

]

and

Fi�x�=2xi

[
x2
1+�x1−1�2+2

n∑
i=2

x2
i −2

]

for i=2�			�n. Then we see that D0�g�∩D0�h� defines an n−1 dimensional
sphere surface{

x∈�n �x1=
1
2
�

n∑
i=2

x2
i =

3
4

}
�

which is the saddle surface of f . The value of f at this saddle surface is c0.
f has a local maximum � 1

2 �0�			�0�� which is at the center of the intersection of
the two balls. The value of f at this point is c0+ 9

16 . f has two global minima
��1+√

5�/2�0�			�0� and ��1−√
5�/2�0�			�0�	 They are in the interiors of the

non-intersected parts of the two balls. The value of f at this point is c0−1. f has
no other critical points.

QUESTION 14. In this example, each Fi is the product of a linear function and
a quadratic polynomial. This makes the task to find all critical points of f much
easier. In which case can we have such luck?
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Note that in the last case of the proposition it is possible that there is a global
minima surface. For example, if the two ellipsoids are proportional and have
the same axes, etc., then this case can be reformulated as the case described by
Proposition 13 and the extrema surface is another ellipsoid surface in the interior
of the bigger ellipsoid ball subtracted by the smaller ellipsoid ball.

PROPOSITION 15 (One Nondegenerate Ellipsoid and One Point). If a normal
quartic polynomial f has a pair of quadratic substantial factors h and g in the
same level, i.e.,

f �x�=g�x�h�x�+c0

for some constant c0, where both g and h are substantial quadratic polynomials,
and one of D0�g� and D0�h� defines a point, say D0�h�=�x∗�, and the other of
them, say D0�g�, defines a nondegenerate ellipsoid. Then f has a global minimum
in the interior of the ellipsoid ball defined by g.
If g�x∗�>0, then x∗ is a local minimum of f .
If g�x∗�=0, then x∗ is a saddle point of f .
If g�x∗�<0, then x∗ is a local maximum of f .

For example, for f defined by

f �x�=
( n∑

i=1

x2
i −1

)[
�x1−1�2+

n∑
i=2

x2
i

]
�

it has only two critical points, a global minimum �1/2�0�			�0� with function
value − 27

16 , and a saddle point �1�0�			�0�	

PROPOSITION 16 (Two Single Points). If a normal quartic polynomial f has
a pair of quadratic substantial factors h and g in the same level, i.e.,

f �x�=g�x�h�x�+c0

for some constant c0, where both g and h are substantial quadratic polynomials,
and each of D0�g� and D0�h� defines a point, say D0�h�=�x∗� and D0�g�=�y∗�.
Then x∗ and y∗ are two global minima of f and the global minimum value of f
is c0.

PROPOSITION 17 (One Quadratic Substantial Factor). If a normal quartic
polynomial f has a pair of quadratic essential factors h and g in the same level,
i.e.,

f �x�=g�x�h�x�+c0
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for some constant c0, where one of g and h, say h is a normal substantial
quadratic polynomial, and the other, say g, is always positive, i.e., g�x�>0�
for all x.
If D0�h� defines a nondegenerate ellipsoid, then f has a global minimum in

the interior point of the ellipsoid ball defined by h. If D0�h�=�x∗�, then f has
the unique global minimum x∗ with function value c0.

The only case which has not discussed so far is the case that f has only primal
quartic essential factors. We now see an example of a primal quartic essential
factor. Let

f �x�=
p∑

i=1

gi�x�
2+

q∑
i=1

hi�x�
2+c0�

where gi are normal quadratic polynomials, hi are linear functions. Let p�1.
Then f is a normal quartic polynomial. Assume that

Z=
( p⋂

i=1

D0�gi�

)⋂( q⋂
i=1

D0�hi�

)

is nonempty. Then we see that Z is the global extrema surface of f . More
specifically, let

f �x�=
( n∑

i=1

x2
i −1

)2

+
k∑

i=1

x2
i �

where 1�k�n−1. Then we have

Fi�x�=4xi

( n∑
i=1

x2
i −

1
2

)
�

for i=1�			�k, and

Fi�x�=4xi

( n∑
i=1

x2
i −1

)
�

for i=k+1�			�n. It is not difficult to see that f has a global minima sphere
surface

S1=
{
x∈�n �

n∑
i=k+1

x2
i =1� xi=0� for i=1�			�k

}
�

with function value 0, a saddle sphere surface

S2=
{
x∈�n �

k∑
i=1

x2
i =

1
2
� xi=0� for i=k+1�			�n

}
�

with function value 3/4, and a local maximum at the origin, with function value 1.
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QUESTION 15. Is any critical surface of a normal quartic polynomial the
intersection of one or several ellipsoids and some hyperplanes?

We may also see the following example:

f �x�=
n∑

i=1

�x4
i −2x2

i �	

We see that f has 2n global minima

�x∈�n �xi=1 or −1� for i=1�			�n��

with function value −n, 3n−2n−1 saddle points with some xi being replaced by
zero in the above set, and a local maximum at the origin with function value 0.

QUESTION 16. What is the minimum upper bound of the number of isolated
local minima of a normal quartic polynomial? Here we see this bound is at least 2n.

Finally, we prove the following theorem:

THEOREM 7 (Uniqueness of the Local Maximum). A normal quartic poly-
nomial f has at most one local maximum.
Proof. Suppose f has two distinct local maxima. It is easy to see that the

restriction of a normal quartic polynomial f in a line is a one dimensional normal
quartic polynomial, and in the line connecting these two local maxima, these two
local maxima of f are two local maxima of the restriction of f in this line. But a
one dimensional normal quartic polynomial has at most one local maxima. This
forms a contradiction and the theorem is proved. �

QUESTION 17. In some examples before, we see that f may have no local
maximum at all. In which case f has no local maximum? One conjecture is that if

f �x�=g�x�h�x�+c0�

g and h are two normal quadratic polynomials, the two ellipsoid balls (may be
degenerate) defined by g and h only touch at one point and none of them contains
the other in its interior, then f has no local maximum. Is this conjecture true? Is
this the only case in which f has no local maximum?

Suppose that f has a unique local maximum x∗. Then the restriction of f on
any line passing x∗ has two local minima which are on the two sides of x∗.
Connecting all these local minima of the line restrictions of f , we have a solid
with x∗ in its center. We see all the other critical points of f are on the boundary
surface of this solid. Thus, in global optimization methods for finding a global
minimum of f , we may working on the surface of that solid. We call such a solid
the critical solid of f .
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QUESTION 18. Is such a critical solid convex? If we consider the convex hull
of all critical points of a normal quartic polynomial f , are all local maxima of f
always located on the boundary of this convex hull, while the local maximum, if
exists, is always located in the interior of this convex hull? The examples what
we have seen imply a positive answer to this question.

8. Concluding Remarks

In this paper, we explored the critical point and extrema structure of a real
polynomial, in particular, a normal quartic polynomial. It is shown that repeated
critical surfaces are relatively easy to handle. It is also shown that normal quartic
optimization should have more efficient methods than general global optimiza-
tion because of its special structure. We raised 18 questions along with our
theorems and propositions. We hope that more properties of critical and extrema
surfaces can be discovered and more efficient algorithms for solving normal
quartic optimization can be established later.
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